
A Distributed Algorithm to Calculate
Max-Min Fair Rates Without Per-Flow State

Lavanya Jose
lavanyaj@cs.stanford.edu

Stanford University
Stanford, CA, USA

Stephen Ibanez
sibanez@stanford.edu
Stanford University
Stanford, CA, USA

Mohammad Alizadeh
alizadeh@csail.mit.edu

MIT CSAIL
MA, USA

Nick McKeown
nickm@stanford.edu
Stanford University
Stanford, CA, USA

ABSTRACT
Most congestion control algorithms, like TCP, rely on a reactive
control system that detects congestion, then marches carefully to-
wards a desired operating point (e.g. by modifying the window size
or adjusting a rate). In an effort to balance stability and convergence
speed, they often take hundreds of RTTs to converge; an increasing
problem as networks get faster, with less time to react.

This paper is about an alternative class of congestion control
algorithms based on proactive-scheduling: switches and NICs “pro-
actively” exchange control messages to run a distributed algorithm
to pick “explicit rates” for each flow. We call these Proactive Explicit
Rate Control (PERC) algorithms. They take as input the routing
matrix and link speeds, but not a congestion signal. By exploiting
information such as the number of flows at a link, they can converge
an order of magnitude faster than reactive algorithms.

Our main contributions are (1) s-PERC (“stateless” PERC), a new
practical distributed PERC algorithm without per-flow state at the
switches, and (2) a proof that s-PERC computes exact max-min
fair rates in a known bounded time, the first such algorithm to
do so without per-flow state. To analyze s-PERC, we introduce a
parallel variant of standard waterfilling, 2-Waterfilling. We prove
that s-PERC converges to max-min fair in 6N rounds, where N is
the number of iterations 2-Waterfilling takes for the same routing
matrix.

We describe how to make s-PERC practical and robust to de-
ploy in real networks. We confirm using realistic simulations and
an FPGA hardware testbed that s-PERC converges 10-100x faster
than reactive algorithms like TCP, DCTCP and RCP in data-center
networks and 1.3–6x faster in wide-area networks (WANs). Long
flows complete in close to the ideal time, while short-lived flows
are prioritized, making it appropriate for data-centers and WANs.

KEYWORDS
congestion control; max-min fairness; data center networks

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6678-6/19/06.
https://doi.org/10.1145/3309697.3331472

Figure 1: Typical convergence behavior for TCP, DCTCP,
and s-PERC running on our NetFPGA testbed.

ACM Reference Format:
Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, and Nick McKeown.
2019. A Distributed Algorithm to Calculate Max-Min Fair Rates Without
Per-Flow State. In ACM SIGMETRICS Int’l Conference on Measurement &
Modeling of Computer Systems (SIGMETRICS’19 Abstracts), June 24–28, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3309697.3331472

EXTENDED ABSTRACT
Cloud data-centers today host thousands of applications on net-
works interconnecting hundreds of thousands of servers. A con-
gestion control algorithm has to balance the needs of short flows,
which need low latency, and long flows, which need high through-
put, regardless of other applications sharing the network.

Cloud providers typically use reactive congestion-control algo-
rithms inside and between their data-centers. This class of algo-
rithms, best represented by TCP, reacts to congestion signals, and
can take hundreds of RTTs to converge, even for simple topolo-
gies. Figure 1 illustrates the problem in our hardware testbed. Two
servers send a TCP flow over a 10Gb/s bottleneck link. The round-
trip time (RTT) is 1ms. After the second flow is added (first vertical
line), it takes TCP 400 RTTs to converge to a fair allocation (second
vertical line). Even DCTCP takes 250 RTTs.

In real networks, many flows are short-lived and the set of flows
changes every millisecond, if not more often, suggesting that in-
stantaneous flow rates in today’s networks never have time to

Session 6B: Control and Resource Allocation SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

57

https://doi.org/10.1145/3309697.3331472
https://doi.org/10.1145/3309697.3331472
https://doi.org/10.1145/3309697.3331472


converge and are far from optimal. As link speeds increase this
problem becomes worse, since flows can finish even faster.

An alternativewould be to use scheduling algorithms likeWFQ [2]
or PGPS [5], which instantaneously share link capacity fairly across
all flows using a link. But maintaining per-flow state is too expen-
sive in data-center switch ASICs with limited on-chip memory.
Another approach, taken by FlowTune [6], is to calculate a fair
rate allocation for each flow in a centralized server, and schedule
the flows to be sent at these rates. But a centralized scheduler is a
bottleneck in a large network, with a rapidly changing set of flows.

We seek fast congestion control algorithms that are practical, do
not require per-flow state, allowing them to scale to any number of
flows, and are distributed, allowing them to scale to any network
size. They must converge quickly to fair rates for any number
of flows. They must remain stable and fast in the face of sudden
changes in the traffic matrix. Finally, they must be general enough
to work for arbitrary topologies at WAN or DC scale.

Our approach is to use distributed proactive (rather than reac-
tive) algorithms to directly calculate the ideal flow rates. We focus
on a class of congestion control algorithms where switches and
NICs “proactively” exchange messages (control packets) to run a
distributed algorithm to pick “explicit rates” for each flow. We call
this Proactive Explicit Rate Control (PERC) [4]. The end hosts send
and receive control packets for each flow, and switches on the flow’s
path use these control packets to locally calculate a rate to allocate
to the flow. The source end host of a flow updates the flow’s sending
rate each time it receives a control packet, to match the lowest rate
allocated by any switch. Over multiple round trips of the control
packets, PERC algorithms figure out the ideal rates exactly for every
flow. PERC algorithms take as input the routing matrix and link
speeds, but not a congestion signal. By exploiting information such
as the number of flows at a link, they can converge an order of
magnitude faster than reactive algorithms.

Introducing a PERC congestion control algorithm into a network
presents many challenges. But as we have seen in recent years,
cloud providers seem willing to invest the effort, given their homo-
geneous infrastructure and single administrative domain. Recent
programmable switches make it practical to implement simple dis-
tributed algorithms at switches, that collect information about flows
proactively and act on it quickly.
Contributions: Our main contributions are (1) s-PERC (“stateless”
PERC), a new practical distributed PERC algorithm without per-
flow state at the switches, and (2) a proof that s-PERC computes
exact max-min fair rates in a known bounded time, the first such
algorithm to do so without per-flow state.

The s-PERC algorithm is a deceptively simple distributed algo-
rithm: End hosts send and receive control packets that carry four
fields (< 7B total) per link, and switches use these control pack-
ets to locally calculate the exact max-min fair flow rate, using a
constant amount of state (8B per link) at the switch itself. s-PERC
was designed to work with the max-min fair metric because it is
a widely-used objective for congestion control algorithms. We de-
scribe how to make s-PERC practical and robust for DC and WAN
networks, including how to handle lost control packets. We have
built a hardware prototype of s-PERC using the 40Gb/s NetFPGA
SUME platform.

Convergence Result: To get a close to optimal bound on the con-
vergence time of s-PERC, we introduce a family of centralized al-
gorithms called k-Waterfilling algorithms [3]. The well-known se-
quential water-filling algorithm [1] is the special case when k = ∞.
As we make k smaller, the water-filling algorithm becomes more
parallel and needs fewer iterations to compute max-min fair rates.
To set the stage for s-PERC, we review an existing distributed
PERC algorithm, called Fair , which requires per-flow state at the
links, and computes locally max-min fair rates at every link to
converge to a global max-min fair allocation [7]. Previous work
shows that the convergence behavior of Fair can be analyzed using
1-Waterfilling [7], the fastest and most parallel of our water-filling
algorithms. We show that the convergence behavior of s-PERC can
be analyzed using 2-Waterfilling, the second most parallel water-
filling algorithm. Specifically, we show that s-PERC is guaranteed to
converge to the max-min fair allocation within 6N rounds, where N
is the number of iterations 2-Waterfilling takes for the same routing
matrix and link speeds, and round is the maximum round trip time
of all control packets [3]. This is a tighter bound than we can ob-
tain using the standard water-filling algorithm (k = ∞), but looser
than the k = 1 bound for Fair . The intuition is that because Fair
uses more state (specifically, per-flow state at every link) it can
be made more parallel and therefore converges faster. But s-PERC
also runs in parallel and can converge much faster than standard
water-filling, despite requiring no per-flow state at the links.
Practical Evaluation:Numerical simulations using randomly gen-
erated routing matrices indicate that s-PERC converges 10-40%
slower than Fair in practice, and the worst-case convergence time
for s-PERC was 2-3x faster than the 6N bound. Packet-level sim-
ulations with realistic workloads show that s-PERC converges an
order of magnitude faster than existing reactive algorithms in data
center networks, and achieves close to ideal throughput for large
flows, and near-minimum latency for the smallest flows. In WAN
networks, s-PERC converges 1.3–6x faster. Testbed measurements
show that s-PERC converges two orders of magnitude faster than
TCP and DCTCP in simple topologies.

REFERENCES
[1] Dimitri Bertsekas and Robert Gallager. 1987. Data Networks. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.
[2] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair

Queueing Algorithm. In Symposium Proceedings on Communications Architectures
&Amp; Protocols (SIGCOMM ’89). ACM, New York, NY, USA, 1–12. https://doi.
org/10.1145/75246.75248

[3] Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, and Nick McKeown. 2019.
A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow
State. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 21 (June 2019), 42 pages.
https://doi.org/10.1145/3326135

[4] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick McKeown,
and Sachin Katti. 2015. High Speed Networks Need Proactive Congestion Control.
In Proceedings of the 14th ACMWorkshop on Hot Topics in Networks (HotNets-XIV).
ACM, New York, NY, USA, Article 14, 7 pages. https://doi.org/10.1145/2834050.
2834096

[5] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor sharing
approach to flow control in integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking 1, 3 (1993), 344–357.

[6] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune: Flowlet
Control for Datacenter Networks. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation (NSDI’17). USENIX Association,
Berkeley, CA, USA, 421–435. http://dl.acm.org/citation.cfm?id=3154630.3154665

[7] Jordi Ros-Giralt. 2003. A Theory of Lexicographic Optimization for Computer
Networks. Ph.D. Dissertation. University of California, Irvine.

Session 6B: Control and Resource Allocation SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

58

https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/3326135
https://doi.org/10.1145/2834050.2834096
https://doi.org/10.1145/2834050.2834096
http://dl.acm.org/citation.cfm?id=3154630.3154665

	Abstract
	References



