
Online Measurement of Large Traffic Aggregates on Commodity Switches

Lavanya Jose, Minlan Yu, and Jennifer Rexford

Princeton University; Princeton, NJ

Abstract

Traffic measurement plays an important role in many

network-management tasks, such as anomaly detection

and traffic engineering. However, existing solutions ei-

ther rely on custom hardware designed for a specific

task, or introduce a high overhead for data collection

and analysis. Instead, we argue that a practical traffic-

measurement solution should run on commodity network

elements, support a range of measurement tasks, and

provide accurate results with low overhead. Inspired

by the capabilities of OpenFlow switches, we explore

a measurement framework where switches match pack-

ets against a small collection of rules and update traffic

counters for the highest-priority match. A separate con-

troller can read the counters and dynamically tune the

rules to quickly “drill down” to identify large traffic ag-

gregates. As the first step towards designing measure-

ment algorithms for this framework, we design and eval-

uate a hierarchical heavy hitters algorithm that identifies

large traffic aggregates, while striking a good balance be-

tween measurement accuracy and switch overhead.

1 Introduction

Network-management tasks, such as anomaly detection

and traffic engineering, rely on timely and accurate mea-

surements of network traffic. Unfortunately, online traf-

fic monitoring is typically expensive, relying on either

heavy-weight collection of per-flow statistics using Net-

Flow [1] or customized hardware designed to measure

specific statistics. Instead, we argue that a practical solu-

tion for network measurement should: (i) run directly on

commodity network elements, (ii) impose minimal over-

head on the network and the collection system, (iii) be

generic enough to support many measurement tasks [12],

and (iv) still provide accurate measurement results.

Existing measurement solutions do not satisfy all of

these goals. While NetFlow runs directly on the routers

and offers fine-grain measurements, maintaining and

exporting per-flow state introduces considerable over-

head. As a result, networks typically perform aggres-

sive sampling (e.g., 1% or 0.1% of packets), reduc-

ing the accuracy. In contrast, researchers have pro-

posed ways to compute specific statistics (e.g., identify-

ing heavy-hitter traffic or estimating the number of ac-

tive flows) [6, 14, 4, 8, 15], but they each rely on cus-

tom hardware. While sharing our goal of a generic mon-

itoring platform, ProgME [13] performs multiple passes

over the same packets; this has scalability limitations and

cannot capitalize on commodity hardware.

In this paper, we explore a measurement frame-

work that exploits the capabilities of the OpenFlow

switches [10] available from multiple vendors (e.g., HP,

NEC, and Quanta) and deployed in several campus and

backbone networks. OpenFlow switches can count traf-

fic based on wildcard rules that match on bits in the

packet header, including IP addresses and TCP/UDP

port numbers. Wildcard rules fit naturally with the

Ternary Content Addressable Memory (TCAM) avail-

able in many switches. When processing a packet, the

switch identifies the matching rules, picks the rule with

the highest priority, updates the associated counter, and

performs some action (e.g., dropping or forwarding the

packet). A separate controller can read the counters and

install new rules. Although OpenFlow switches can di-

rect data packets to the controller, we intentionally re-

strict ourselves to a setting where all data packets are

handled by the switches to reduce controller overhead.

Unlike custom streaming algorithms that modify com-

plex data structures on demand, our measurement frame-

work relies on simple match-and-count rules where the

controller only adjusts rules periodically. We argue that

this simple framework is sufficient for many measure-

ment tasks, such as DoS detection and “heavy hitter”

identification. However, due to the switch constraints

(i.e., the limited number of rules and overhead for up-

dating rules), algorithms built on our framework sacri-



Figure 1: Illustration of the measurement framework.

fice accuracy in exchange for a low-overhead, commod-

ity solution. For example, an algorithm can detect large

traffic aggregates by iteratively adjusting the wildcard

rules—leading to a short delay in detecting the traffic,

while producing intermediate useful results at a some-

what coarser level of aggregation. Our broader research

goal is to understand the algorithmic trade-offs in this

measurement framework, and to create useful algorithms

that can run on commodity OpenFlow switches.

To explore our measurement framework, we consider

a specific measurement problem. The hierarchical heavy

hitters (HHH) problem [7, 14, 6] identifies the large

traffic aggregates, where the aggregates are tailored to

the traffic (e.g., a single source IP address responsible

for 11% of the traffic, and a particular source IP prefix

responsible for another 12%). We selected this prob-

lem because it provides useful measurement data, has

been studied in previous work on custom data structures,

and introduces a clear trade-off between hardware com-

plexity and measurement accuracy. We present a new

HHH algorithm for our measurement framework. Our

experiments with packet traces show that our algorithm

achieves relatively high accuracy with low overhead.

2 Traffic Measurement Framework

In this section we describe a measurement framework

based on commodity OpenFlow switches. We first dis-

cuss the practical constraints of the switches and then

show how to support a wide range of measurement tasks.

2.1 Commodity Switch Constraints

The measurement framework contains two parts, as

shown in Figure 1. In the data plane, the TCAM matches

packets with wildcard rules at line speed; in the control

plane, the controller reads counters and installs rules.

Data plane: Matching rules and counting packets at

line rate. For each incoming packet, the switch com-

pares the packet header simultaneously against a collec-

tion of monitoring rules, picks the matching rule with the

highest priority, and increments its associated counter.

Since TCAMs are expensive and power hungry, a switch

has a limit N on the number of rules we can use for traf-

fic monitoring. We expect N to be a very small fraction

of the total rules available since the majority of the rules

will be used for other data-plane functions, such as ac-

cess control and packet forwarding.

The emerging OpenFlow 1.1 specification [2] supports

multiple stages of rules for different purposes, allowing

us to have a separate stage for traffic monitoring, or to

support multiple stages of monitoring (e.g., separately

measuring HHHes on both the source and destination IP

addresses). Switches supporting only one stage of rules

would use the “cross-product” of the rules needed for dif-

ferent purposes; for example, we may need N = 400

rules if we have 20 rules for identifying HHH source ad-

dresses, and 20 rules for destination addresses.

Control plane: A controller adapting rules at fixed

intervals. The controller can run directly on the switch

or on a separate machine managing the entire network.

The controller reads the counters from the TCAM rules

at a fixed measurement interval M , analyzes the coun-

ters, and generates statistics to report to the network op-

erators. The controller also dynamically adapts the rules

based on the counter values from previous measurement

intervals. In practice, M is limited by how quickly the

controller can read the counters from the TCAM and

generate the rules for the next interval. In our experi-

ments, M ranges from seconds to minutes.

Our proposed measurement framework relies only on

features available in OpenFlow switches. In fact, for ef-

ficiency and simplicity, we restrict how the controller in-

teracts with the switches. To reduce the controller over-

head, we do not allow the switches to direct data pack-

ets to the controller, relegating the controller to installing

rules and reading counters. For simplicity, we consider

only rules that monitor traffic, rather than other actions

such as forwarding or dropping packets. In addition, we

assume the controller only adapts rules at a fixed inter-

val; in practice, the controller can read different counters

at different times to spread the load over the interval.

2.2 Example Measurement Tasks

Our measurement framework is useful for many mea-

surement tasks that require (i) constructing a baseline

understanding of “normal” traffic (by selectively mon-

itoring different portions of the traffic over time, and

combining these measurements into a model of normal

behavior) and (ii) quickly pinpointing large traffic aggre-

gates (by “drilling down” into a portion of the traffic us-

2



ing finer-grain rules). We give several example measure-

ment tasks that can use our measurement model:

Measuring normal traffic pattern: Network operators

often need to understand the basic traffic patterns in their

network, e.g., the clients that typically communicate with

a web server, the average traffic volume directed to each

Web site, etc. A controller application could install rules

that measure a subset of the client addresses at each in-

terval, cycling through all the source address blocks to

identify the common senders and their traffic volumes.

Identifying large traffic changes: Identifying signif-

icant traffic changes is the key challenge for anomaly

detection. Based on the normal traffic pattern, the con-

troller can install a few rules to monitor different groups

of traffic (e.g., based on address or port number). If the

traffic volume for one group has changed significantly,

the controller can expand the rules to ultimately find the

specific senders responsible for the traffic change.

Pinpointing denial-of-service (DoS) attacks: To de-

tect DoS attacks, the controller could first observe a large

increase in traffic at a Web server, and then collect finer-

grain measurements to distinguish a “flash crowd” from

an attack. For example, the controller could expand the

rules to identify the offending source IP addresses, while

collapsing other rules to ensure enough monitoring re-

sources are available. The controller can also install

rules on different switches to collect more measurement

data, and to simultaneously identify traffic from multiple

senders close to where the attacks enter the network.

Because of practical constraints on commodity

switches, our framework cannot solve all measurement

problems effectively. For example, similar to NetFlow,

we cannot solve problems that require deep packet in-

spection at line rate. In addition, like any measurement

solution that samples or aggregates traffic, our frame-

work cannot easily detect low-volume traffic anomalies

(e.g., a “ping of death” attack). Detecting short-lived at-

tacks is also difficult, because the controller only reads

counters and updates rules periodically. An attacker

could stop an attack before the controller had enough

time to “drill down” to identify the culprit; still, this lim-

its the severity of attacks, since attackers must constrain

their behavior to evade detection. Ultimately, detecting

and diagnosing low-rate or short-lived attacks requires

other monitoring techniques, such as commonly-used in-

trusion detection systems. Instead, we focus on monitor-

ing tasks that detect and diagnose large traffic aggregates.

3 Identifying Hierarchical Heavy Hitters

In this section, we take the hierarchical heavy hitter prob-

lem as an example to show the use of the measurement

framework and understand the tradeoff between hard-

Figure 2: A trie (prefix tree) of source IP addresses, where

each node contains the volume of traffic sent by that IP prefix

during interval i. The nodes in double circles are heavy hitters

and those with shaded circles are both heavy hitters and hier-

archical heavy hitters. Before interval i, we assume there are

eight rules in the TCAM as shown in Figure 1.

ware complexity and measurement accuracy. We formu-

late the Hierarchical Heavy Hitters (HHH) problem us-

ing our measurement framework. Then, we discuss the

intuition behind how we minimize the number of TCAM

entries we use to identify HHHes. Based on these in-

sights, we present algorithms that report HHH and adapt

the monitoring rules to traffic changes. Finally, our eval-

uation with realistic packet traces shows that we can

achieve high accuracy with low overhead.

3.1 Hierarchical Heavy Hitters Problem

Definition of hierarchical heavy hitters: Network op-

erators need to identify the important traffic in the net-

work. One simple way to define “important” traffic is

the Heavy Hitters along some dimension, e.g., the source

IP prefixes that contribute more than a fraction T of link

capacity over the past p packets or q seconds. For exam-

ple, Figure 2 illustrates the traffic volume for each source

IP prefix, represented as a trie (or prefix tree) where the

leaves correspond to IP addresses and the other nodes are

prefixes that aggregate the traffic of their descendants.

Applying a threshold of 10% to the leaves would only re-

port node 0000, ignoring the large contribution from the

prefix 010*. However, reporting all large prefixes would

report too much (redundant) information, such as 000*

and 01** that are large only because of a large child.

A more concise way to summarize the traffic is to re-

port the Hierarchical Heavy Hitters (HHH) [7, 14, 6],

i.e., the longest IP prefixes that contribute a large amount

of traffic (i.e., at least a fraction T of link capacity), after

excluding any HHH descendants. In Figure 2, the 010*

node is an HHH because the two children collectively

contribute more than 10% of the link capacity, but each

child individually contributes less than the threshold. In

3



contrast, node 000* is not an HHH, despite contributing

12% of the link capacity, because nearly all of this traf-

fic comes from the descendant 0000 that is an HHH in

its own right. Yet, the node 0*** is an HHH, because

its non-HHH descendants 0001, 001*, and 01** collec-

tively contribute more than 10% of the link capacity. A

network has at most 1/T HHH nodes (e.g., a threshold

of T = 0.10 leads to at most 10 HHH nodes).

Prior solutions: A simple solution to the HHH problem

is to run an offline algorithm over the traffic counts for

all leaf nodes in the trie. However, this approach is slow

and has high measurement overhead. Instead, an online

algorithm can identify the “important” prefixes and the

associated traffic. Previous work assumed custom hard-

ware that is not available in commodity switches. These

algorithms adjust which prefixes to monitor, in one of

two ways: The first way is to adjust the prefixes based

on each packet [13, 4, 6, 14], at the expense of cus-

tom hardware. The other way is to adjust the prefixes

at a periodic interval. Similar to our model, the authors

in [9] assume the switch hardware applies simple rules

that count the packets matching each prefix, where the

rules change only periodically (e.g., seconds) rather than

for each packet. However, the work in [9] focuses on

the (non-hierarchical) heavy hitter problem; although the

HHHes can be computed from the HHes, this would re-

quire far more rules than solving the HHH problem di-

rectly. As a result, must use a large number of rules

to track all heavy hitter prefixes. They also allow each

packet to match multiple rules and increment multiple

counters. Given the limited TCAM space in the switch

hardware, they must be conservative in expanding the

rules; for example, to expand one prefix, they may first

need to collapse other prefixes. Recent work [11] designs

new algorithms for the HHH problem but assumes more

custom operations in the TCAM than this paper.

HHH problem in our framework: In our measure-

ment framework, the HHH problem can be reformulated

as: given the maximum number of rules N , the measure-

ment interval M , and a threshold T , find the traffic aggre-

gates that consume at least T of the link capacity in each

interval. A solution generates the rules to install in the

next interval, and computes the HHHes from the counters

collected in the previous interval. Since the rules are not

updated on each packet arrival, the algorithm cannot al-

ways produce an accurate report of the HHHes and their

traffic counts. Previous work considers two metrics—

recall and precision—to quantify accuracy [5]. Recall is

the total number of true HHHes reported by our algo-

rithm over the real number of HHHes reported by an of-

fline algorithm; the higher the recall, the lower the false

negatives. Precision is the total number of true HHHes

reported over the total number of answers reported; the

higher the precision, the lower the false positives.

3.2 Minimizing Number of TCAM Entries

The monitoring rules for the HHH problem can be easily

implemented with TCAMs. If we knew the HHHes for

a given interval, we could simply monitor their counts

by installing a wildcard prefix rule for each one in the

TCAM. We can set higher priority to those rules with

longer prefixes. If one packet matches multiple rules, the

switch selects the rule with highest priority and thus only

increments the counters for the longest prefix. For exam-

ple, in Figure 1, we use a group of eight wildcard rules as

shown in the TCAM to monitor the traffic illustrated in

Figure 2. A packet with source IP address 0010 matches

two prefixes 001* and 0***, but the switch only incre-

ments the counter for the longer prefix 001*.

The number of rules required in the TCAM is in-

versely proportional to T , which is the threshold we use

to identify HHHes. This is because there are at most

1/T HHHes whose traffic is more than a fraction T of

the link capacity. However, we do not know the HHHes

in advance because the traffic keeps changing, and we do

not have enough rules to monitor all the prefixes. To re-

duce the number of rules we monitor and discover new

HHHes when they appear, we have three approaches:

Always monitor the root: We make sure we always

monitor the root in every interval.1 The root’s count will

give us the number of packets that do not match any other

rule. If this number exceeds the threshold, then we know

that there is at least one HHH that is not being counted

by any other rule. We may have to install new rules in

the next interval to narrow down on the HHH.

Monitor the children of HHH prefixes with at most

2/T rules: This will alert us when there is a more-

specific HHH being counted by the prefix. For example,

suppose we installed a single rule to monitor the HHH

prefix 010* (in Figure 2) during the next interval. If the

children’s counts change from 9 and 3 to 10 and 2, re-

spectively, then 0100 becomes a new HHH; however, the

counter for 010* would still indicate 12, suggesting no

change. By monitoring each child of the HHH prefix, we

can identify when a child’s counter exceeds the thresh-

old. We need at most 2/T rules to identify all the HHHes

that exceed fraction T of the link capacity.

Monitor the parents of HHH prefixes with the ex-

tra rules: Sometimes a monitored prefix drops below

threshold, but the prefix and its (non-HHH) sibling col-

lectively exceed the threshold, making their parent a new

HHH. From the installed rules (Figure 1) for the traffic

1To be consistent with the next solution (monitor the children of the

HHHes), we actually monitor the root’s two children (e.g., , 0*** and

1*** in Figure 1).

4



in Figure 2, we see that one child 000* of the monitored

prefix 00** exceeds the threshold, while the other child

001* with a count of 7 does not. We can no longer report

00** as an HHH. However its parent 0*** has become

an HHH, because—after excluding its HHH descendants

0000 and 010*—its count exceeds the threshold. Alter-

natively, we could simply add the non-HHH child’s count

to the nearest upstream prefix and drill down until we

reach the HHH parent of the monitored prefix. However,

with n levels between the root and the new HHH parent,

identifying the new HHH can take n intervals. In con-

trast, if we know the sibling’s count, we can determine

immediately if the parent has become an HHH.

3.3 Adaptive Monitoring Algorithms

We first describe the basic algorithm that only monitors

the children of HHHes. Then we present an enhanced al-

gorithm that leverages the remaining rules in the TCAM

to monitor the parents of HHHes.

Basic algorithm: We start by monitoring the root (e.g.,

installing two rules to monitor the children of the root

0*** and 1*** in Figure 2). At each measurement inter-

val, our algorithm reads the counters from the TCAM, re-

ports the identified HHHes, and then adapts all the mon-

itoring rules to capture new HHHes in the next interval.

For each prefix we monitor, we install the rules for its two

children. For each prefix p whose children were moni-

tored in the previous interval i, we report if p or its chil-

dren are HHHes and decide which prefixes to monitor in

the next interval i + 1. There are three conditions:

(1) Keep the rules: If the count of p is larger than frac-

tion T of the link capacity but none of its children exceed

the threshold, then we report p as an HHH and continue

to monitor p’s children in the next interval.

(2) Expand the rules: If one or both the children of p ex-

ceed the threshold, p is no longer an HHH in this interval.

For the child k that exceeds the threshold, we report it as

an HHH, and monitor it (install the rules for its two chil-

dren) in the next interval. For the child k′ whose count

does not exceed threshold, we add its count to the near-

est upstream prefix in the TCAM. For example, suppose

we have the eight rules shown in Figure 2 to monitor the

four prefixes 010*, 011*, 00** and **** at interval i.
During interval i, the monitored prefix 00**’s child 000*

exceeds the threshold, so we install rules for its children

0000 and 0001 in the next interval i + 1. The other child

001* with count 7 is still below the threshold, so we add

its count to nearest upstream prefix in the TCAM 0***.

(3) Collapse the rules: If the number of packets match-

ing p is below the threshold, we do not report p as an

HHH in this interval or monitor it during the next inter-

val. Instead, we just add p’s count to the nearest upstream

5% Threshold 10% Threshold

Basic Enhanced Basic Enhanced

Precision 78-87% 79-88% 85-93% 90-95%

Recall 76-86% 77-87% 81-90% 88-94%

Table 1: The precision and recall for HHH algorithms.

prefix in the TCAM. For example in Figure 2, since the

monitored prefix 011* no longer exceeds the threshold,

its count 9 will instead be added to 0***.

Enhanced algorithm: The basic algorithm may not use

all the 2/T rules in the TCAM, because we may have

fewer than 2/T HHHes if some HHH takes far more than

T fraction or the link is not heavily loaded. We can use

the s spare rules to monitor the parents of existing HH-

Hes, to detect cases where an existing HHH drops below

the threshold and its parent becomes a new HHH. We

first sort all the existing HHHes in decreasing order of

their counts. Assuming that the prefixes with the lowest

traffic volume are most likely to drop below the thresh-

old, we monitor the parents of the bottom s HHHes.2

3.4 Evaluation with Realistic Packet Trace

To evaluate the basic and enhanced algorithms for identi-

fying HHHes, we used a one-hour packet trace collected

at a backbone link of a Tier-1 ISP in San Jose, CA, at

12 pm on Sept. 17, 2009 [3]. We built a simulator that

runs our algorithm in every measurement interval to re-

port HHHes, and update the rules. We evaluated dif-

ferent interval values M ranging from 1 to 60 seconds.

The HHHes for each interval were aggregated at different

prefixes based on the 32-bit source IP address field. We

set the threshold T to be 0.1 and 0.05, as the fraction of

the maximum amount of traffic in all the measurement

intervals. We set the total number of rules K to 2/T ,

which is 20 and 10 when T = 0.1 and 0.05, respectively.

We compared our reported HHH to the list of exact

HHH that we get with an offline algorithm in each mea-

surement interval. We counted the reported HHH as cor-

rect only if it was in the list of actual HHHes, and its

reported count was identical.3 We measured the preci-

sion and recall as defined in Section 3 for the different

values of T and M . The running average of precision

and recall in all the experiments converged within 200

intervals. Table 1 presents the ranges of precision and

recall we get from the basic and enhanced algorithms for

the different M . We made the following observations:

2In fact, we install rules to monitor these HHHes’ siblings in the

next interval, so that we can learn the counts of these HHHes’ parents

by combining the counts of the HHHes and their siblings.
3We also evaluated the metric that a reported HHH is viewed as

correct when it was in the list of the exact HHH but its reported count

is different. The precision and recall improve by at most 1%.

5



(1) Precision is always better than recall: We observed

that the precision is better than recall for any given inter-

val. This is because missing the HHH prefix hurts our re-

call, and reporting a non-HHH prefix as an HHH affects

our precision. We report a prefix incorrectly whenever

we aggregate an HHH at the wrong level, so we have at

least as many missed HHHes as incorrect prefixes. For

example, in Figure 2, if our algorithm misses the HHH

0000 and instead reports the more general prefix 000*,

we reduce both the recall and the precision. If both 0000

and 0001 are true HHHes, but we report 000*, then we

miss two HHHes and report one wrong HHH. As a result,

we always achieve better precision than recall.

(2) Higher accuracy for 10% threshold than 5%: Our

algorithm performs better for the higher threshold. This

is because prefixes with more traffic (above 10% thresh-

old) are more stable in traffic volume, while prefixes with

less traffic (around 5%) are much more volatile—leading

to more changes in HHHes from one interval to the next.

(3) Monitoring parents of HHHes with a few more rules

improves both the precision and recall: There is an

improvement of between 1 to 5% for the enhanced al-

gorithm, compared with the basic algorithm. This is

because the enhanced algorithm makes use of the extra

rules in the TCAM to monitor the parents of HHHes.

(4) The accuracy depends on the traffic changes in in-

tervals: The precision and recall vary with the interval

size (as shown by the ranges in Table 1). This is be-

cause the accuracy closely relates to the amount of traf-

fic changes in the packet trace and the resulting HHH

changes for different interval values. We did not see a

clear trend in the relationship between accuracy and in-

terval size as the size increased from 1 to 60 seconds.

However, the accuracy dropped a lot for measuring in-

tervals as long as 5 minutes. Our accuracy is better for

shorter intervals because the traffic is stable on this scale

and the set of HHHes does not change much from one

interval to the next (i.e., not many entries need to be up-

dated after each interval). As a result, we can adapt the

rules more frequently and find the new HHHes faster.

(5) Quantifying accuracy in different ways: Even when

our algorithms report an incorrect HHH, or miss a true

HHH, the measurement results could still be useful to the

network operator. For example, when a new HHH 0000

appears, we may take several measurement intervals to

locate it. In the meantime, we may report a coarser-

grained prefix 000*, which is still useful for the opera-

tors. We have defined a new metric for the relaxed accu-

racy, which is omitted due to lack of space.

4 Conclusion and Future Work

We proposed a practical measurement model based on

emerging OpenFlow switches. The proposed model runs

on commodity hardware, is generic across different mea-

surement tasks, and achieves high accuracy with low

overhead. We studied the HHH problem to understand

the tradeoff between accuracy and overhead, and pro-

posed new HHH algorithms that are useful for network

operators managing networks of OpenFlow switches.

We plan to extend our HHH algorithms to the

multi-dimensional HHH problem (e.g., considering both

source and destination addresses). Furthermore, we will

explore ways to combine measurement results from dif-

ferent switches and understand the overhead on them as

we extend our solutions to other measurement problems

such as detecting DoS attacks and traffic changes.

References

[1] http://www.cisco.com/en/US/products/ps6601/

products ios protocol group home.html.

[2] http://openflow.org/documents/openflow1.

1-allmerged-draft1.pdf.

[3] CAIDA packet trace. http://www.caida.org/data/

monitors/passive-equinix-sanjose.xml.

[4] N. Bandi, A. Metwally, D. Agrawal, and A. E. Abbadi. Fast

data stream algorithms using associative memories. In ACM SIG-

COMM, 2007.

[5] G. Cormode and M. Hadjieleftheriou. Methods for finding fre-

quent items in data streams. VLDB Journal, 2010.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Find-

ing hierarchical heavy hitters in streaming data. ACM Transac-

tions on Knowledge Discovery from Data, Jan. 2008.

[7] C. Estan, S. Savage, and G. Varghese. Automatically inferring

patterns of resource consumption in network traffic. In ACM SIG-

COMM, 2003.

[8] C. Estan and G. Varghese. New directions in traffic measurement

and accounting. SIGCOMM, 2002.

[9] N. Kammenhuber and L. Kencl. Efficient statistics gathering

from tree-search methods in packet processing systems. IEEE

ICC, 2005.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-

terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: En-

abling innovation in campus networks. ACM Computer Commu-

nication Review, Apr. 2008.

[11] M. Mitzenmacher, T. Steinke, and J. Thaler. Hierarchical heavy

hitters with the space saving algorithm. arXiv:1102.5540, 2011.

[12] G. Varghese and C. Estan. The measurement manifesto. HotNets,

2003.

[13] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards pro-

grammable network measurement. In ACM SIGCOMM, 2007.

[14] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online

identification of hierarchical heavy hitters: Algorithms, evalu-

ation, and applications. In Internet Measurement Conference,

2004.

[15] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter

architecture with optimal space and time efficiency. In ACM SIG-

METRICS, 2006.

6


